Math 54: Topology Proof Techniques 101

In general, mathematically proving statements requires creativity and a significant reserve of patience; there is no recipe (or collection of recipes) that will cover all the different techniques and ideas. However, there are standard methods and common themes that can^1 help guide proofs depending on the formulation of the statement. Here are a few²:

Statement Form	Standard Proof Methods
If A , then B .	DIRECT: Assume A and deduce B .
	CONTRAPOSITIVE: Prove "if not B , then not A ."
	That is, assume not B and deduce not A .
A if and only if B .	Prove "if A , then B " and "if B , then A ."
Not A.	CONTRADICTION: Assume A and deduce a con-
	tradiction.
	See "On proving 'not A '."
A or B.	Prove "if not A, then B."
	Prove "if not B , then A ."
	CONTRADICTION: Assume not A and not B and
	deduce a contradiction.
	Consider all possible cases and show that in some
	cases A holds and B holds in the rest.
For all x , $A(x)$.	Take an <i>arbitrary</i> object x and deduce $A(x)$.
	CONTRADICTION: Assume there exists x such
	that $A(x)$ is false and derive a contradiction.
There exists x such that $A(x)$.	Find a specific x for which $A(x)$ is true.
	CONTRADICTION: Assume that $A(x)$ holds for all
	x and derive a contradiction.
The x such that $A(x)$ is unique.	Assume there is another and deduce that they
	must be equal.
There is a unique x such that $A(x)$.	Prove: (1) "there exists x such that $A(x)$ " and (2)
	"the x such that $A(x)$ " is unique.
For all integers $n \ge n_0$, $A(n)$.	INDUCTION: (1) Base case: prove $A(n_0)$ is true.
	(2) Inductive step: prove "if $A(n)$, then $A(n+1)$."

¹This does not mean that they *should* be used.

²This has been adapted from Marcia Groszek's *Some Proof Principles* (Winter 2014) and Jennifer Bowen's *Some Notes on Proof Techniques* (Fall 2014).

Commentary

On the previous page, the word "deduce" appears repeatedly. For mathematicians, deduction involves **logically arriving at the conclusion starting from your assumptions** (and only using things that follow *from* those assumptions!).

Quantifiers: Special care should be taken with proofs involving the quantifiers "for all" or "there exists."

- FOR ALL (∀): It is tempting to use a handful of examples (or 10,000,000) and claim the result based on that evidence. However, the result *must* be shown for an arbitrary object.
- THERE EXISTS (\exists) : It is enough to exhibit a single example with the desired property (in topology, these are often bizarre).

On proving "not *A*": Disproving statements (often termed "finding a counterexample") depends greatly on the statement. For instance:

- Disproving "all men are blue" involves finding a single man who is not blue.
- Disproving "if an animal wears clothes, then it is a human" requires finding an animal wearing clothes that is not a human.
- Disproving "there (currently) exists a living cat with six legs" requires examining *every* living cat and checking how many legs they have.

Induction: Proofs by induction frequently cause trouble initially. The idea is very elegant: we setup the first rung of a ladder and we use it to build the next and so on. This technique has two essential steps:

- (1) "CHECKING THE BASE CASE": In this step, we are making sure that the statement has a chance of being true. Generally this is the easiest part of the proof.
- (2) "THE INDUCTIVE STEP": This is the "use the rung you just built to make the next one" step. We assume the *inductive hypothesis* A(n) and we want to use it to deduce A(n + 1).

We will prove " $2^n \ge n+1$ for all $n \in \mathbb{Z}_+$ " by induction.

Proof. We will proceed by induction. Let A(n) be the statement " $2^n \ge n+1$."

Base case: Consider n = 1. Then $2^n = 2^1 = 2 = 1 + 1 = n + 1$. Thus A(1) holds.

Inductive step: Assume A(n) for some $n \in \mathbb{Z}_+$ (i.e., $2^n \ge n+1$ (*) for this specific n). We will show A(n+1). Consider

$$2^{n+1} = 2^n \cdot 2 \stackrel{(*)}{\geq} (n+1) \cdot 2 = 2n+2.$$

Since n is a positive number, we have 2n > n. Hence

$$2^{n+1} \ge 2n+2 > n+2 = (n+1)+1.$$

Thus $2^{n+1} > (n+1) + 1$. Therefore $2^{n+1} \ge (n+1) + 1$ or, equivalently, A(n+1) holds.

Conclusion: By induction, A(n) is true for all $n \in \mathbb{Z}_+$ (which is what we wanted to show). \Box